Implementasi Algoritma Fuzzy C-Means untuk Pengelompokkan Provinsi di Indonesia Berdasarkan Kualitas Perguruan Tinggi

  • Ira Halimatuz Zahro Universitas Muhammadiyah Jember
  • Ulya Anisatur Rosyidah Universitas Muhammadiyah Jember
  • Luluk Handayani Universitas Muhammadiyah Jember
Keywords: Universities, Fuzzy C-Means, Clustering, Education Quality

Abstract

The education system in Indonesia is very large and complex with low quality. The quality of Indonesian education can improve, one way is by having equal distribution of education in every province in Indonesia. This equality can be one solution to improve the quality of graduates in Indonesia. This equality can be done by grouping Indonesian provinces with low quality education. One grouping method that can be used is the Fuzzy C-Means algorithm, which is a clustering technique that is determined by the degree of membership in each data point in one cluster. The grouping process was carried out using 136 data on Higher Education Gross Enrollment Rates in 34 provinces from 2019-2022. The data was processed using the Fuzzy C-Means algorithm and then a search for optimal clusters was carried out using the help of the Partition Coefficient Index. Based on testing from 2 to 10 clusters, the optimum cluster is 2 clusters, with a Partition Coefficinet Index value of 0.83491. In the optimum cluster, we get cluster 1 with 20 provinces and cluster 2 with 14 provincial groups. Characteristics resulting from data from 2019 to 2022, cluster 1 has provincial members with the lowest higher education APK compared to cluster 2, especially in cluster 1 members, namely Kep province. Bangka Belitung which has the lowest higher education APK is 2019 with 14.27 APK, 2020 with 14.73 APK, 2021 with 15.23 APK, 2022 14.85 APK.

Downloads

Download data is not yet available.

References

Waller, R. E., Lemoine, P. A., Mense, E. G., Garretson, C. J., & Richardson, M. D. (2019). Global Higher Education in a VUCA World: Concerns and Projections. Journal of Education and Development, 3(2), 73. https://doi.org/10.20849/JED.V3I2.613

Logika Fuzzy Untuk Model Penunjang Keputusan - Google Books, n.d.)

Ahmadi, A., & Hartati, S. (n.d.). Penerapan Fuzzy C-Means dalam Sistem Pendukung Keputusan untuk Penentuan Penerima Bantuan Langsung Masyarakat (BLM) PNPM-MPd (Studi Kasus PNPM-MPd Kec. Ngadirojo Kab. Pacitan) Fuzzy C-Means Implementation in Decision Support System for Determination of Recipients of Direct Aid Program (Case Study: PNPM-MPd Kec. Ngadirojo Kab. Pacitan).

https://www.bps.go.id/id/statistics-table/2/MTQ0MyMy/angka-partisipasi-kasar--apk--perguruan-tinggi--pt--menurut-provinsi.html

Wakhidah, N. (n.d.). CLUSTERING MENGGUNAKAN K-MEANS ALGORITHM (K-MEANS ALGORITHM CLUSTERING).

Dani, U., Oktavianto, H., Azizah, H., & Faruq, A. (n.d.). Implementasi Algoritma Fuzzy C-Means Untuk Pengelompokan Kabupaten Atau Kota di Jawa Timur Berdasarkan Tingkat Kesejahteraan Implementation of the Fuzzy C-Means Algorithm for Grouping Regencies or Cities in East Java Based on Welfare Levels. http://jurnal.unmuhjember.ac.id/index.php/JST

Logika Fuzzy Untuk Model Penunjang Keputusan - Google Books, n.d.)

Wahyuntari, A., Negeri, S., & Sorong, K. (2023). Meningkatkan Hasil Belajar IPA Materi Sistem Peredaran Darah Pada Manusia Melalui Pendekatan Saintifik Siswa Kelas VIII H SMP Negeri 1 Kota Sorong Tahun 2022. Jurnal Pendidikan, 11(1).

Sumantri, G., Dwi Novianto, M., Prihastuti, P. P., & Yogyakarta, U. N. (2023). Implementasi Fuzzy C-Means dalam Pengelompokan Provinsi di Indonesia untuk Pemerataan Kualitas Pendidikan. Matematika Dan Statistika, 8.

Hidayatun, D., Deskoni, D., & Koryati, D. (2020). Faktor-Faktor Yang Mempengaruhi Minat Peserta Didik Untuk Melanjutkan Pendidikan Ke Perguruan Tinggi Di Sma Negeri 2 Oku.

Permadi, F. T., Nilogiri, A., & Rosyidah, U. A. (2023). Algoritma Fuzzy C-Means dan Metode Davies Bouldin Index (DBI) untuk Mengolompokkan Kabupaten/Kota di Jawa Timur Berdasarkan Sanitasi Layak, Air Minum Layak, dan Rumah Layak Huni. Jurnal Smart Teknologi, 4(4), 450–459. https://jurnal.unmuhjember.ac.id/index.php/JST/article/view/16230

Published
2024-02-28
How to Cite
Zahro, I. H., Rosyidah, U. A., & Handayani, L. (2024). Implementasi Algoritma Fuzzy C-Means untuk Pengelompokkan Provinsi di Indonesia Berdasarkan Kualitas Perguruan Tinggi. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(1), 80-86. https://doi.org/10.37148/bios.v5i1.102
Section
Articles