Implementasi Ensemble Learning Metode XGBoost dan Random Forest untuk Prediksi Waktu Penggantian Baterai Aki

  • Muhamad Amhar Rayadin Universitas Halu Oleo
  • Mustarum Musaruddin Universitas Halu Oleo
  • Rizal Adi Saputra Universitas Halu Oleo
  • Isnawaty Isnawaty Universitas Halu Oleo
Keywords: Ensemble Learning, XGBoost, Random Forest, Prediction, Battery

Abstract

In motor vehicles, including cars, the battery plays an important role, namely as a place to store electrical energy and as an electric voltage stabilizer when the engine is turned on. In general, motorized vehicle users do not know the condition of the battery in their vehicle. Even though the use of battery batteries that are already in poor condition can interfere with vehicle performance. In battery replacement services such as after-sales service, the process of checking and replacing battery batteries takes a relatively long time. This can be caused by high service volume, lack of worker reliability, lack of responsiveness to the complexity of the inspection. This research aims to build a prediction model for battery battery replacement time quickly. To meet these needs, a Machine Learning approach can be used. Machine Learning uses historical replacement data to make predictions of replacement time. Machine Learning algorithms that can be used for prediction are XGBoost and Random Forest. This research uses ensemble learning techniques to combine the two models. Based on the evaluation results, it can be concluded that the model built with ensemble learning has better prediction results than a single model. Evaluation results with MSE on the ensemble bagging model have the lowest error values of 145,448. The MAPE, MAE, and RMSE evaluations on the ensemble boosting model have the lowest error values of 11.56 %, 43.80 and 38,760.

Downloads

Download data is not yet available.

References

H. Firdaus, E. Rustendi, and A. Herdiana, “Analisis Konsumsi Arus Listrik pada Mobil Multi Purpose Vehicle,” J. Ilm. Teknol. Infomasi Terap., vol. 8, no. 1, pp. 150–158, 2021, doi: 10.33197/jitter.vol8.iss1.2021.736.

A. F. Fahmi and I. M. Arsana, “Alat Pendeteksi Kerusakan Cell Accu,” J. Rekayasa Mesin, vol. 06, no. 03, pp. 1–7, 2021, [Online]. Available: https://ejournal.unesa.ac.id/index.php/jurnal-rekayasa-mesin/article/view/41987

J. R. Balinado, Y. T. Prasetyo, M. N. Young, S. F. Persada, B. A. Miraja, and A. A. N. Perwira Redi, “The Effect of Service Quality on Customer Satisfaction in An automotive After-Aales Aervice,” J. Open Innov. Technol. Mark. Complex., vol. 7, no. 2, 2021, doi: 10.3390/joitmc7020116.

I. Prasetyo and I. Saputro, “Perbaikan dan Perawatan Aki Basah,” J. Surya Tek., vol. 2, no. 2, pp. 16–21, 2018.

S. Y. J. Prasetyo, Y. B. Christianto, and K. D. Hartomo, “Analisis Data Citra Landsat 8 OLI Sebagai Indeks Prediksi Kekeringan Menggunakan Machine Learning di Wilayah Kabupaten Boyolali dan Purworejo,” Indones. J. Model. Comput., vol. 2, no. 2, pp. 25–36, 2019, [Online]. Available: https://ejournal.uksw.edu/icm/article/view/2954

S. Usman, “Predictive Sparepart Maintenance Menggunakan Algoritma Machine Learning Extreme Gradiant Boosting Regressor,” J. Syst. Comput. Eng., vol. 5, no. 2, pp. 249–258, 2024.

J. Avanija, G. Sunitha, K. R. Madhavi, P. Kora, and R. H. SaiVittal, “Prediction of House Price Using XGBoost Regression Algorithm,” Turkish J. Comput. Math. Educ., vol. 12, no. 2, pp. 2151–2155, 2021, doi: 10.17762/turcomat.v12i2.1870.

D. Borup, B. J. Christensen, N. S. Mühlbach, and M. S. Nielsen, “Targeting Predictors in Random Forest Regression,” Int. J. Forecast., vol. 39, no. 2, pp. 841–868, 2023, doi: https://doi.org/10.1016/j.ijforecast.2022.02.010.

S. Fachid and A. Triayudi, “Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 68, 2022, doi: 10.30865/mib.v6i1.3492.

J. M. A. S. Dachi and P. Sitompul, “Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit,” J. Ris. Rumpun Mat. dan Ilmu Pengetah. Alam, vol. 2, no. 2, pp. 87–103, 2023, doi: https://doi.org/ 10.55606/jurrimipa.v2i2.1336.

B. Sunarko et al., “Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat,” Edu Komputika J., vol. 10, no. 1, pp. 55–63, 2023, doi: https://doi.org/10.15294/edukomputika.v10i1.72080.

U. Indahyanti, N. L. Azizah, and H. Setiawan, “Pendekatan Ensemble Learning Untuk Meningkatkan Akurasi Prediksi Kinerja Akademik Mahasiswa,” J. Sains dan Inform., vol. 8, no. 2, pp. 160–169, 2022, doi: 10.34128/jsi.v8i2.459.

I. M. Hamdani, A. Karman, N. F. A. H, and A. Hermina, “Edukasi dan Pelatihan Data Science dan Data Preprocessing,” INTISARI J. Inov. Pengabdi. Masy., vol. 2, no. 1, pp. 19–26, 2024, doi: 10.58227/intisari.v2i1.125.

F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.

M. A. Wiratama and W. M. Pradnya, “Optimasi Algoritma Data Mining Menggunakan Backward Elimination untuk Klasifikasi Penyakit Diabetes,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 1, p. 1, 2022, doi: 10.23887/janapati.v11i1.45282.

D. Sartika and I. Saluza, “Penerapan Metode Principal Component Analysis (PCA) Pada Klasifikasi Status Kredit Nasabah Bank Sumsel Babel Cabang KM 12 Palembang Menggunakan Metode Decision Tree,” Generic, vol. 14, no. 2, pp. 45–49, 2022, doi: 10.18495/generic.v14i2.130.

H. Tao et al., “Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting,” Complexity, vol. 2020, pp. 1–22, 2020, doi: 10.1155/2020/8844367.

E. K. Sahin, “Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest,” SN Appl. Sci., vol. 2, no. 7, pp. 1–17, 2020, doi: 10.1007/s42452-020-3060-1.

E. Mardiani, N. Rahmansyah, S. Ningsih, and ..., “Komparasi Metode Knn, Naive Bayes, Decision Tree, Ensemble, Linear Regression Terhadap Analisis Performa Pelajar Sma,” Innov. J. …, vol. 3, no. 2, pp. 13880–13892, 2023, [Online]. Available: http://j-innovative.org/index.php/Innovative/article/view/1949%0Ahttp://j-innovative.org/index.php/Innovative/article/download/1949/1468

S. Choi and J. Hur, “An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting,” Energies, vol. 13, no. 6, 2020, doi: 10.3390/en13061438.

M. Liang et al., “A Stacking Ensemble Learning Framework for Genomic Prediction,” Front. Genet., vol. 12, no. March, pp. 1–9, 2021, doi: 10.3389/fgene.2021.600040.

S. C. Pal et al., “Ensemble of machine-learning methods for predicting gully erosion susceptibility,” Remote Sens., vol. 12, no. 22, pp. 1–25, 2020, doi: 10.3390/rs12223675.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, 2016, doi: 10.1145/2939672.2939785.

W. Li, Y. Yin, X. Quan, and H. Zhang, “Gene Expression Value Prediction Based on XGBoost Algorithm,” Front. Genet., vol. 10, no. November, pp. 1–7, 2019, doi: 10.3389/fgene.2019.01077.

L. Breiman, “Random Forests,” Mach. Learn. 45, vol. 5, no. 32, pp. 5–32, 2001, doi: https://doi.org/10.1023/A:1010933404324.

E. Vivas, H. Allende-Cid, and R. Salas, “A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score,” Entropy, vol. 22, no. 12, pp. 1–24, 2020, doi: 10.3390/e22121412.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.

Published
2024-08-27
How to Cite
Rayadin, M. A., Musaruddin, M., Saputra, R. A., & Isnawaty, I. (2024). Implementasi Ensemble Learning Metode XGBoost dan Random Forest untuk Prediksi Waktu Penggantian Baterai Aki. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), 111-119. https://doi.org/10.37148/bios.v5i2.128