Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier

  • Johnson Sihombing STMIK Ganesha Bandung
Keywords: Decision Support System, Text Classification, Naive Bayes Classifier, Python

Abstract

With the development of advances in computer technology today, most companies and organizations need a decision support system based on information systems, where the information is generally stored in the form of documents / text that is not structured. In this regard, a system for text management that is integrated with the decision support system is needed. One of them is the use of text data classification for anthropometric case studies of several samples. Anthropometry is a measurement of a person's body dimensions. The object of research is gender, first name, and height of a person. The research aims to determine the ratio of the number and height probability level of the number of men and women based on the input into an application using the Naïve Bayes Classifier method. The implementation design uses the Python programming language. The results showed that the height classification data frequency of women was more than the height classification data for men. And the number of height probability of a woman's body is greater than the number of height probability of a man's body.

Downloads

Download data is not yet available.

References

I. D. and A. S. Suasmini, Penempatan Posisi Ketinggian Monitor Diturunkan Dapat Mengurangi Keluhan Subjektif Para Pemakai Kaca Bifokal, vol. 2, no. 11. Denpasar: Institut Seni Indonesia, 2011.

Anonim, “Pentingnya Pengukuran Antropometri dalam Bidang Kesehatan di Indonesia,” 2019. [Online]. Available: https://soloabadi.com/pentingnya-pengukuran-antropometri-dalam-bidang-kesehatan-di-indonesia/. [Accessed: 21-Mar-2021].

A. Irianton, Memantau dan Menilai Status Gizi Anak. Yogyakarta: Leutika Books, 2013.

A. Istiany and Rusilanti, Gizi Terapan. Bandung: PT Remaja Rosdakarya, 2013.

D. L. Olson and D. Delen, Advanced Data Mining Techniques. Verlag Berlin Heidelberg: Springer, 2008.

D. Xhemali, C. J. Hinde, and R. G. Stone, “Naive Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages,” Int. J. Comput. Sci., vol. 4, no. 1, pp. 16–23, 2009.

Bustami, “Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi,” TECHSI J. Penelit. Tek. Inform., vol. 3, no. 2, p. 127, 2013.

A. Saleh, “Implementasi Metode Klasifikasi Naive Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” Citec J., vol. 2, no. 3, p. 207, 2015.

I. Listiowarni, “Implementasi Naïve Bayessian dengan Laplacian Smoothing untuk Peminatan dan Lintas Minat Siswa SMAN 5 Pamekasan,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 2, p. 124, 2019.

Published
2021-03-20
How to Cite
Sihombing, J. (2021). Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 2(1), 1-10. https://doi.org/10.37148/bios.v2i1.15
Section
Articles