Analisis Prediksi Kebutuhan Kapasitas Media Penyimpanan RME dengan Metode Least Square RSUPN Dr. Cipto Mangunkusumo Jakarta
Abstract
The implementation of electronic medical record services is supported by PMK RI Number 24 of 2022, Article 3, Paragraph 1, which mandates that every health service facility must organize Electronic Medical Records (EMR). Therefore, hospitals need to transition from manual to electronic records. One necessary step is determining the storage capacity needed for the server. Additionally, according to Article 39, EMRs must be stored for 25 years, requiring a prediction of storage needs over that period. This study discusses predicting the storage capacity needs for EMRs using the Least Square method, which analyzes time series data trends. Hospital data shows 130,712 medical records with a size of 261,424 MB from September 2022 to March 2023. The predicted storage needs from April to December 2023 are 781,490 MB, and for the next 25 years (until 2048) is 8,974,669 MB or 9 TB. The accuracy of the prediction, tested using MAPE, is 6.34%, which is considered very good. RSUP Nasional Dr. Cipto Mangunkusumo has provided 6 TB of server storage and 71 TB of NAS as backup. With 80 GB used per month as of March 2023, the hospital is advised to provide storage according to the prediction. Additionally, the maximum upload size in the HIS needs to be increased beyond 2 MB per medical record to maximize scanning quality and efficiency
Downloads
References
R. I. Kemenkes, “Standar Profesi Perekam Medis dan Informasi Kesehatan,” Jakarta: Kemenkes RI, pp. 1–42, 2020.
Kementerian Kesehatan RI, “Peraturan Menteri Kesehatan Republik Indonesia Nomor 24 Tahun 2022 Tentang Rekam Medis,” 2022.
M. Jannah, B. L. Basyah, and R. A. Riyadi, “Rancang Bangun Network Attached Storage (NAS) pada Raspberry Pi untuk Penyimpanan Data Terpusat Berbasis WLAN,” Jurusan Ilmu Komputer, Fakultas Ilmu Komputer, Universitas Gunadarma, 2015.
K. C. Pelangi, M. E. Lasulika, and A. R. K. Haba, PREDIKSI PRODUKSI MENGGUNAKAN METODE LEAST SQUARE. CV. CAHAYA ARSH PUBLISHER & PRINTING.
J. H. Barus and R. Ramli, “Analisis peramalan ekspor Indonesia pasca krisis keuangan eropa dan Global tahun 2008 dengan metode dekomposisi,” Jurnal Ekonomi dan Keuangan, vol. 1, no. 3, p. 14880, 2013.
M. D. D. , C. S. , Rahmi Hidayati, “Prediksi Jumlah Kebutuhan Obat Menggunakan Metode Least Square Berbasis Website (Studi Kasus: Uptd Puskesmas Pontianak Selatan),” Coding Jurnal Komputer dan Aplikasi, vol. 8, no. 2, 2020, doi: 10.26418/coding.v8i2.41495.
S. I. P. Lestari, M. Andriani, A. D. GS, P. Subekti, and R. Kurniawati, Peramalan Stok Spare Part Menggunakan Metode Least Square. Sefa Bumi Persada, 2019.
G. Bin Senitio, J. Santony, and J. Na’am, “Tingkat Prediksi Pendaftar Ujian Kompetensi Laboratorium Menggunakan Metode Least Square,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 3, pp. 746–752, 2018.
N. N. A. Christy and M. M. SE, Komunikasi bisnis. Radna Andi Wibowo, 2019.
A. K. Wardhani et al., Teknik Peramalan Pada Teknologi Informasi. Padang, Sumatera Barat, 2022.
Copyright (c) 2024 Savira Puteri Wulandari, Angga Rahagiyanto, Novita Nuraini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.