Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering Di Rumah Sakit Widodo Ngawi

  • Harfina Dilawati STIKES Bhakti Husada Mulia
  • Heru Widianto STIKES Bhakti Husada Mulia
  • Agustinus Kuswiadji STIKES Bhakti Husada Mulia
Keywords: Medical Records, Clustering, Data Mining, K-Means Clustering, RStudio

Abstract

Medical record management is the most vital aspect of hospital operations. Medical records serve as a crucial source of information in patient healthcare services. Through data mining, knowledge extraction and data analysis can be carried out to find relationships, data structures, patterns, and regularities between data. The purpose of this study is to cluster using the RStudio application with the K-means clustering technique and identify disease prevalence patterns in Ngawi Regency. The methodology used is quantitative descriptive using secondary data, samples taken from hospitalization data from October to December 2023 totaling 3171 and divided into six variables, namely gender, age, sub-district, diagnosis, length of treatment and payment method. There are four clustering results, Cluster 1 amounted to 524 patients (19%), Cluster 2 amounted to 831 patients (30%), Cluster 3 amounted to 940 patients (33%) and Cluster 4 amounted to 512 patients (18%). Based on visits from each sub-district in Ngawi Regency, the total number of inpatient disease cases is fever (74), gastrointestinal diseases (64), stroke (43), and degenerative diseases such as diabetes (64), heart disease (7), neoplasms (6), asthma (4), systemic diseases (3), and external diseases (10). The study's findings can serve as a foundation for statistical management to inform decisions aimed at enhancing services and inpatient facilities

Downloads

Download data is not yet available.

References

R. Ordila, R. Wahyuni, Y. Irawan, and M. Yulia Sari, “Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus : Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, pp. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.

C. Sanggamele, F. K. Kolibu, and F. R. R. Maramis, “Analisis Pengelolaan Rekam Medis Di Rumah Sakit Umum Pancaran Kasih Manado,” J. KESMAS, vol. 7, no. 4, pp. 1–11, 2018.

B. W. Aulia, M. Rizki, P. Prindiyana, and S. Surgana, “Peran Krusial Jaringan Komputer dan Basis Data dalam Era Digital,” JUSTINFO | J. Sist. Inf. dan Teknol. Inf., vol. 1, no. 1, pp. 9–20, 2023, doi: 10.33197/justinfo.vol1.iss1.2023.1253.

D. U. Dedo, M. M. Ngongo, T. Informatika, S. Stella, and M. Sumba, “Promotional Strategy To Increase Computer Sales ( Case Study : Global Teknik ) Kata Kunci : Strategi pemasaran , supply chain Perkembangan teknologi yang berkembang begitu cepat merambah ke berbagai bidang kehidupan manusia . Teknologi informasi tidak dap,” vol. 1, no. 2, pp. 131–139, 2023.

M. Rivki, A. M. Bachtiar, T. Informatika, F. Teknik, and U. K. Indonesia, Data Mining and Learning Analystic, no. 112.

M. Kamber and J. Han, Data Mining: Concepts and Techniques : Concepts and Techniques. 2006.

W. Purba et al., “Penerapan Data Mining Untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-means Clustering Pada Rumah Sakit Royal Prima Medan,” J. TEKINKOM, vol. 6, no. 1, pp. 158–168, 2023, doi: 10.37600/tekinkom.v6i1.857.

M. Risqi Ananda, N. Sandra, E. Fadhila, A. Rahma, and N. Nurbaiti, “Data Mining dalam Perusahaan PT Indofood Lubuk Pakam,” Com. Commun. Inf. Technol. J., vol. 2, no. 1, pp. 108–119, 2023, doi: 10.47467/comit.v2i1.124.

M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.

H. Nusa Putra and D. Putri Anisa, “Klasterisasi Data Rekam Medis Pada Diagnosa Penyakit Berdasarkan Usia Pasien Menggunakan Algoritma K-Means Di Puskesmas Lubuk Alung,” Ensiklopedia J., vol. 3, no. 5, pp. 128–133, 2021.

A. Ali, “Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, pp. 186–195, 2019, doi: 10.30812/matrik.v19i1.529.

Yullia Agustin and Adiati Trihastuti, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Wajib Pajak Kendaraan Bermotor (Di Kantor Samsat Kabupaten Lamongan),” J. Student Res., vol. 1, no. 2, pp. 248–263, 2023, doi: 10.55606/jsr.v1i2.994.

Yahya and W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape ( Rokok El ektrik ) pada ‘ Lombok Vape On ’ Pendahuluan dihasilkan tidak stabil dan tidak mampu diprediksi Dari penelitian yang dilakukan , berusaha untuk mengklasifikasik,” J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020.

T. Amalina, D. Bima, A. Pramana, and B. N. Sari, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” J. Ilm. Wahana Pendidik., vol. 8, no. 15, pp. 574–583, 2022.

Y. D. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, vol. 12, no. 2, pp. 148–157, 2017, doi: 10.37676/jmi.v12i2.418.

Published
2024-09-29
How to Cite
Dilawati, H., Widianto, H., & Kuswiadji, A. (2024). Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering Di Rumah Sakit Widodo Ngawi. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), 139-147. https://doi.org/10.37148/bios.v5i2.134
Section
Articles