Python Application to SEIR Model of the Spread of Malaria

  • Fajar Ilham Maulana Universitas Islam Bandung
  • Yani Ramdani Universitas Islam Bandung
Keywords: Python, SEIRS model, equilibrium point, basic reproduction, Malaria

Abstract

Python is the next breakthrough in natural science computing because it enables users to do more and better science. Research on the Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) disease spread model has received a lot of attention, but with different factors, and the article aims to apply Python in simulating SEIRS-type Malaria spread data with handling/treatment parameters in other classes. They are exposed to the assumption that individuals who recover from Malaria may become susceptible to transmission of the disease. The data processing simulation aims to see whether Malaria will develop into an epidemic. The use of Python code will make it easier to detect outbreaks. The model for spreading Malaria involves four classes: susceptible, infected but not yet active, infected, and recovered. The simulation data is the number of malaria sufferers in 2017 from the Mimika District Health Service, Indonesia. Mimika Regency is the region with the highest number of malaria cases at 29.12% of all malaria cases in Indonesia. The equilibrium point is determined using a SEIRS-type mathematical model. Data processing with simulations in the SEIRS model obtains a primary reproduction number (Ro) of 0.078 and R0 < 1, so the disease will not become an epidemic.

Downloads

Download data is not yet available.

References

[1] Lin, J. W. B. (2012). Why Python is the next wave in earth sciences computing. Bulletin of the American Meteorological Society, 93(12), 1823-1824.
[2] Marowka, A. (2018). Python accelerators for high-performance computing. The Journal of Supercomputing, 74(4), 1449–1460.
[3] https://www. quora.com/Why-does-Python-get-so-much-hate
[4] (https://www.python.org/)[3]
[5] Marowka, A. (2018). On parallel software engineering education using Python. Education and Information Technologies, 23(1), 357–372.
[6] Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3(2), 272.
[7] Pawar, P. S., Mishra, D. R., Dumka, P., & Pradesh, M. (2022). Obtaining exact solutions of viscoincompressible parallel flows using Python. Int J Eng Appl Sci Technol, 6(11), 213-217.
[8] Huei, Y. C. (2014, December). Benefits and introduction to Python programming for more students using inexpensive robots. In 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) (pp. 12-17). IEEE.
[9] Lin, J. W. B. (2012). Why Python is the next wave in earth sciences computing. Bulletin of the American Meteorological Society, 93(12), 1823-1824.
[10] Taghizadeh, E., & Mohammad-Djafari, A. (2022). SEIR Modeling, Simulation, Parameter Estimation, and Their Application for COVID-19 Epidemic Prediction. 18. https://doi.org/10.3390/psf2022005018
[11] Jalili, P., Jalili, B., Ahmad, I., Hendy, A. S., Ali, M. R., & Ganji, D. D. (2024). Python approach for using homotopy perturbation method to investigate heat transfer problems. Case Studies in Thermal Engineering, 54, 104049.
[12] Rahmadhani, A. P., Kusumastuti, A., & Juhari, J. (2023). Analisis Model Epidemi SEIR Menggunakan Metode Runge-Kutta Orde 4 pada Penyebaran COVID-19 di Indonesia. Jurnal Riset Mahasiswa Matematika, 2(3), 90–104. https://doi.org/10.18860/jrmm.v2i3.16355
[13] Bjørnstad, O. N., Shea, K., Krzywinski, M., & Altman, N. (2020). The SEIRS model for infectious disease dynamics. Nature Methods, 17(6), 557–558. https://doi.org/10.1038/s41592-020-0856-2
[14] Resmawan, R. (n.d.). SEIRS-SEI Model of Malaria Disease with Application of Vaccines and Anti-Malarial Drugs. https://doi.org/10.21203/rs.3.rs-533624/v1
[15] Ochieng, F. O. (2024). SEIRS model for malaria transmission dynamics incorporating seasonality and awareness campaign. Infectious Disease Modelling, 9(1), 84–102. https://doi.org/10.1016/j.idm.2023.11.010
[16] Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical models in epidemiology (Vol. 32). New York: Springer.
[17] Cai, J., Sun, W., Huang, J., Gamber, M., Wu, J., & He, G. (2020). Indirect virus transmission in a cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging infectious diseases, 26(6), 1343.
[18] Hurint, R. U., Ndii, M. Z., & Lobo, M. (2017). Analisis sensitivitas model epidemi SEIR. Natural Science: Journal of Science and Technology, 6(1).
[19] Fosu, G. O., Opong, J. M., & Appati, J. K. (2020). Construction of compartmental models for COVID-19 with quarantine, lockdown and vaccine interventions. Lockdown and Vaccine Interventions (April 12, 2020).
[20] Ode Sabran, L., & Jannah, M. (n.d.). Model matematika seirs-sei pada penyebaran penyakit demam berdarah dengue dengan pengaruh suhu seirs-sei mathematic model on the spread of dengue hemorrhagic feber with temperature effect.
[21] Si, A. (n.d.). Model matematika sir-asi epidemiologi demam berdarah. https://www.researchgate.net/publication/347441218
[22] Perasso, A. (2018). An introduction to the primary reproduction number in mathematical epidemiology. ESAIM: Proceedings and surveys, pp. 62, 123–138.
Published
2024-09-30
How to Cite
Maulana, F. I., & Ramdani, Y. (2024). Python Application to SEIR Model of the Spread of Malaria. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), 150-160. https://doi.org/10.37148/bios.v5i2.151
Section
Conferences