Ensemble Learning dengan Soft Voting Classifier untuk Klasifikasi Pasien Tifus di Puskesmas Balung

  • Lutfi Ali Muharom Universitas Muhammadiyah Jember
  • Dudi Irawan Universitas Muhammadiyah Jember
  • Taufiq Timur Warisaji Universitas Muhammadiyah Jember
Keywords: Ensemble Learning, Gradient Boosting, Logistic Regression, Random Forest, Typhoid Fever

Abstract

Typhoid fever remains a significant public health problem in Indonesia, particularly in areas with limited medical facilities. This study aims to develop an automatic classification model for typhoid diagnosis using an ensemble learning approach based on the Soft Voting Classifier. The model combines three base algorithms, Logistic Regression, Random Forest, and Gradient Boosting, to enhance predictive accuracy. The dataset was obtained from Balung Primary Health Center, Jember Regency, consisting of 510 patient records with typhoid symptoms. Experimental results show that the ensemble model achieved an accuracy of over 92%, outperforming individual models. Furthermore, adequate precision and recall indicate the model’s potential to support rapid and accurate medical diagnosis. These findings demonstrate that the Soft Voting Classifier can serve as an effective tool to assist healthcare workers, especially in resource-limited settings, in improving the quality of typhoid fever diagnosis.

Downloads

Download data is not yet available.

References

Budayatin, J. Waluyo, and D. Wahyuni, “The identification of Salmonella sp. in ‘cilok’ road food in campus area of Jember University,” IOP Conf. Ser. Earth Environ. Sci., vol. 747, no. 1, p. 12106, 2021, doi: 10.1088/1755-1315/747/1/012106.

K. Saraswati, J. K. Baird, S. D. Blacksell, M. L. Grijsen, and N. P. J. Day, “History of scrub typhus in Indonesia,” Trans. R. Soc. Trop. Med. Hyg., vol. 119, no. 4, pp. 338–345, Apr. 2025, doi: 10.1093/trstmh/traf017.

D. P. Neupane, H. P. Dulal, and J. Song, “Enteric Fever Diagnosis: Current Challenges and Future Directions,” Pathogens, vol. 10, no. 4. 2021. doi: 10.3390/pathogens10040410.

J. Sapkota, T. Roberts, B. Basnyat, S. Baker, L. M. Hampton, and S. Dittrich, “Diagnostics for Typhoid Fever: Current Perspectives and Future Outlooks for Product Development and Access,” Open Forum Infect. Dis., vol. 10, no. Supplement_1, pp. S17–S20, May 2023, doi: 10.1093/ofid/ofad120.

K. Kannan et al., “Performance of molecular and serologic tests for the diagnosis of scrub typhus,” PLoS Negl. Trop. Dis., vol. 14, no. 11, p. e0008747, Nov. 2020, [Online]. Available: https://doi.org/10.1371/journal.pntd.0008747

F. E. Ayo, J. B. Awotunde, R. O. Ogundokun, S. O. Folorunso, and A. O. Adekunle, “A decision support system for multi-target disease diagnosis: A bioinformatics approach,” Heliyon, vol. 6, no. 3, Mar. 2020, doi: 10.1016/j.heliyon.2020.e03657.

S. Mishra, R. Kumar, S. K. Tiwari, and P. Ranjan, “Machine learning approaches in the diagnosis of infectious diseases: a review,” Bull. Electr. Eng. Informatics; Vol 11, No 6 December 2022DO - 10.11591/eei.v11i6.4225 , Dec. 2022, [Online]. Available: https://beei.org/index.php/EEI/article/view/4225

S. Roy, T. Meena, and S.-J. Lim, “Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine,” Diagnostics, vol. 12, no. 10. 2022. doi: 10.3390/diagnostics12102549.

F. A. Nishat, M. F. Mridha, I. Mahmud, M. Alfarhood, M. Safran, and D. Che, “Enhancing Typhoid Fever Diagnosis Based on Clinical Data Using a Lightweight Machine Learning Metamodel,” Diagnostics, vol. 15, no. 5. 2025. doi: 10.3390/diagnostics15050562.

J. Qin, L. Chen, Y. Liu, C. Liu, C. Feng, and B. Chen, “A Machine Learning Methodology for Diagnosing Chronic Kidney Disease,” IEEE Access, vol. 8, pp. 20991–21002, 2020, doi: 10.1109/ACCESS.2019.2963053.

A. M. Rahmani et al., “Machine Learning (ML) in Medicine: Review, Applications, and Challenges,” Mathematics, vol. 9, no. 22. 2021. doi: 10.3390/math9222970.

N. Caballé-Cervigón, J. L. Castillo-Sequera, J. A. Gómez-Pulido, J. M. Gómez-Pulido, and M. L. Polo-Luque, “Machine Learning Applied to Diagnosis of Human Diseases: A Systematic Review,” Applied Sciences, vol. 10, no. 15. 2020. doi: 10.3390/app10155135.

G. Battineni, G. G. Sagaro, N. Chinatalapudi, and F. Amenta, “Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis,” Journal of Personalized Medicine, vol. 10, no. 2. 2020. doi: 10.3390/jpm10020021.

P. Pintelas and I. E. Livieris, “Special Issue on Ensemble Learning and Applications,” Algorithms, vol. 13, no. 6. 2020. doi: 10.3390/a13060140.

K. Cao-Van, T. C. Minh, L. G. Minh, T. T. B. Quyen, and H. M. Tan, “Soft-Voting Ensemble Model: An Efficient Learning Approach for Predictive Prostate Cancer Risk,” Vietnam J. Comput. Sci., vol. 11, no. 04, pp. 531–552, Jul. 2024, doi: 10.1142/S2196888824500155.

N. Chandrasekhar and S. Peddakrishna, “Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization,” Processes, vol. 11, no. 4. 2023. doi: 10.3390/pr11041210.

A. Srinivas and J. P. Mosiganti, “A brain stroke detection model using soft voting based ensemble machine learning classifier,” Meas. Sensors, vol. 29, p. 100871, 2023, doi: https://doi.org/10.1016/j.measen.2023.100871.

S. W. A. Sherazi, J.-W. Bae, and J. Y. Lee, “A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary syndrome,” PLoS One, vol. 16, no. 6, p. e0249338, Jun. 2021, [Online]. Available: https://doi.org/10.1371/journal.pone.0249338

N. Devita, M. S. Riski, R. Marufi, and U. A. Habibah, “Profil manifestasi klinis dan laboratorium pasien demam tifoid di Rumah Sakit PKU Bantul,” J. Kedokt. Univ. Palangka Raya, vol. 11, no. 2 SE-Articles, Oct. 2023, doi: 10.37304/jkupr.v11i2.10753.

J. Breda, M. Springston, A. Mariakakis, and S. Patel, “FeverPhone: Accessible Core-Body Temperature Sensing for Fever Monitoring Using Commodity Smartphones,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 7, no. 1, Mar. 2023, doi: 10.1145/3580850.

Published
2025-09-30
How to Cite
Muharom, L. A., Irawan, D., & Warisaji, T. T. (2025). Ensemble Learning dengan Soft Voting Classifier untuk Klasifikasi Pasien Tifus di Puskesmas Balung. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 6(2), 101-107. https://doi.org/10.37148/bios.v6i2.186
Section
Articles