Penerapan Algoritma K-Means Clustering untuk Segmentasi Nasabah Bank
Abstract
Segmentasi nasabah merupakan strategi yang penting dalam industri perbankan untuk memahami karakteristik dan kebutuhan pelanggan secara lebih mendalam. Penelitian ini menerapkan algoritma K-Means clustering untuk mengelompokkan nasabah berdasarkan faktor demografi dan finansial, seperti usia, jenis kelamin, pendapatan, status pernikahan, dan kepemilikan aset perbankan. Data yang digunakan terdiri dari 600 record nasabah yang diambil dari sumber daring dan diproses menggunakan metode unsupervised learning dalam data mining. Proses clustering dilakukan dengan beberapa nilai k (jumlah cluster) untuk menentukan pengelompokan yang optimal. Validasi dilakukan menggunakan Within-Cluster Sum of Squares (WCSS) dan Davies-Bouldin Index guna mengukur kualitas hasil segmentasi. Hasil penelitian menunjukkan bahwa segmentasi dengan nilai k = 2 dan k = 4 memberikan pola yang lebih jelas dibandingkan k = 3, di mana setiap cluster memiliki karakteristik yang berbeda dalam hal profil risiko, preferensi produk, dan tingkat keterlibatan dengan layanan perbankan. Dengan pendekatan ini, bank dapat meningkatkan strategi pemasaran, manajemen risiko kredit, serta personalisasi layanan berdasarkan segmentasi yang dihasilkan. Selain itu, penelitian ini memberikan rekomendasi untuk pengembangan sistem berbasis data mining yang dapat membantu dalam pengambilan keputusan bisnis di sektor perbankan.
Downloads
References
H. Rizkyanto and F. L. Gaol, "Customer Segmentation of Personal Credit using Recency, Frequency, Monetary (RFM) and K-Means on Financial Industry," International Journal of Advanced Computer Science and Applications(IJACSA), 14(4), 2023.
L. K. Kumar, D. Venkatesh, J. Katyayani, S. Sunkara and G. K., "A Study on Customer Segmentation for Banking Sector Through Cluster Analysis: Ethical Implications," Communications on Applied Nonlinear Analysis Vol.21 No.5s, 2024.
T. Kovács, A. Ko and A. Asemi, "Exploration of The Investment Patterns of Potential Retail Banking Customers Using Two-Stage Cluster Analysis," Journal of Big Data, 2021.
V. Djurisic, L. Kascelan, S. Rogic and B. Melovic, "Bank CRM Optimization Using Predictive Classification Based on the Support Vector Machine Method," Applied Artificial Intelligence Volume 34 Issue 12, 2020.
F. K. Nasser and S. F. Behadili, "A Review of Data Mining and Knowledge Discovery Approaches for Bioinformatics," Iraqi Journal of Science Vol 63 No 7, 2022.
S. M. Dol and D. P. M. Jawandhiya, "A Review of Data Mining in Education Sector," Journal of Engineering Education Transformations Volume: 36, Issue: Special Issue 2, pp. 13-22, 2023.
E. P. W. Mandala and D. E. Putri, "Data Mining Technique for Grouping Products Using Clustering Based on Association," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) Vol 31, No 2, 2023.
R. E. Abadi, M. J. Ershadi and S. T. A. Niaki, "A Clustering Approach For Data Quality Results of Research Information Systems," Information Discovery and Delivery Volume 51 Issue 4, 2022.
Z.-Y. Lim, L.-Y. Ong and M.-C. Leow, "A Review on Clustering Techniques: Creating Better User Experience for Online Roadshow," Future Internet 13(9), p. 233, 2021.
H. Mittal, A. C. Pandey, M. Saraswat, S. Kumar, R. Pal and G. Modwel, "A Comprehensive Survey of Image Segmentation: Clustering Methods, Performance Parameters, and Benchmark Datasets," Multimedia Tools and Applications Volume 81, p. 35001–35026, 2022.
M. Capó, A. Pérez and J. A. Lozano, "An Efficient K-Means Clustering Algorithm For Tall Data," Data Mining and Knowledge Discovery Volume 34, p. 776–811, 2020.
C. Fang and H. Liu, "Research and Application of Improved Clustering Algorithm in Retail Customer Classification," Symmetry Volume 13 Issue 10, 2021.
A. Punhani, N. Faujdar, K. K. Mishra and M. Subramanian, "Binning-Based Silhouette Approach to Find the Optimal Cluster Using K-Means," IEEE Access Volume 10, 2022.
Copyright (c) 2025 Dudi Irawan, Guruh Wijaya, Taufiq Timur Warisaji

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.