Analisis Sentimen Pergantian Kementerian Keuangan Indonesia dengan Menggunakan Algoritma Support Vector Machine

  • Haikal Nurul Barki Universitas Bina Sarana Informatika
  • Haidar Aslam Aslam Universitas Bina Sarana Informatika
  • Adhi Prasetyo Wibowo Universitas Bina Sarana Informatika
  • Faqih Al Araf Araf Universitas Bina Sarana Informatika
  • Abdul Hamid Musawir Universitas Bina Sarana Informatika
Keywords: Sentiment Analysis, Classification, Multiclass SVM, Confusion Matrix, Ministry of Finance

Abstract

The leadership transition within the Ministry of Finance of the Republic of Indonesia is a strategic event that has triggered various public responses. These reactions reflect the level of public trust in the government’s fiscal and economic policy directions. This study aims to analyze public sentiment regarding the leadership change using the Support Vector Machine (SVM) algorithm as the main classification method. The data were collected from public comments on YouTube videos discussing the Minister of Finance transition. The research stages included data collection, text preprocessing, sentiment labeling, feature extraction using the Term Frequency–Inverse Document Frequency (TF-IDF) method, and sentiment classification using SVM. Model evaluation was carried out through accuracy, precision, and recall metrics. The results show that the SVM algorithm achieved optimal classification performance with an accuracy of approximately 97%. The majority of the public expressed positive sentiment toward the leadership transition, while a smaller portion conveyed negative responses related to uncertainty about future economic policy directions.

Downloads

Download data is not yet available.

References

K. Nandini dan M. Rahardi, “Sentiment Analysis of Economic Policy Comments on YouTube Using Ensemble Machine Learning,” 2025. [Daring]. Tersedia pada: http://jurnal.polibatam.ac.id/index.php/JAIC

A. Nur, A. Saputra, R. E. Saputro, dan S. Saputra, “Enhancing Sentiment Analysis Accuracy Using SVM and Slang Word Normalization on YouTube Comments,” Jurnal dan Penelitian Teknik Informatika, vol. 9, no. 2, 2025, doi: 10.33395/sinkron.v9i2.14513.

F. Rifaldy, Y. Sibaroni, dan S. S. Prasetiyowati, “Effectiveness of Word2Vec and TF-IDF in Sentiment Classification on Online Investment Platforms Using Support Vector Machine,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 2, hlm. 863–874, Mar 2025, doi: 10.29100/jipi.v10i2.6055.

S. Raihan Putri dan L. Rosnita, “Sentiment Analysis of Youtube and Gotube Reviews on Google Play Using the Support Vector Machine (SVM) Method in Indonesia,” 2025. [Daring]. Tersedia pada: http://jurnal.polibatam.ac.id/index.php/JAIC

M. Ma’rufudin dan A. Yudhistira, “Analisis Sentimen Petani Milenial Pada Media Sosial X Menggunakan Algortitma Support Vector Machine (SVM),” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 3, hlm. 845–857, Mar 2025, doi: 10.52436/1.jpti.717.

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, dan A. S. Aribowo, “Terakreditasi SINTA Peringkat 2 Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” masa berlaku mulai, vol. 1, no. 3, hlm. 648–654, 2017.

D. I. Sumantiawan, J. E. Suseno, dan W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction,” J. Sistem Info. Bisnis, vol. 13, no. 1, hlm. 1–9, Jun 2023, doi: 10.21456/vol13iss1pp1-9.

N. Fajriyah, N. T. Lapatta, D. W. Nugraha, dan R. Laila, “IMPLEMENTASI SVM DAN SMOTE PADA ANALISIS SENTIMEN MEDIA SOSIAL X TERHADAP PELANTIKAN AGUS HARIMURTI YUDHOYONO,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 2, hlm. 1359–1370, Mar 2025, doi: 10.29100/jipi.v10i2.6246.

S. Chairani Siregar, R. T. Adek, dan Z. Fitri, “Sentiment Analysis of Comments on Youtube Channel Beauty Vlogger in Indonesian Language Using Support Vector Machine Method,” vol. 2, hlm. 1–6, 2024, doi: 10.29103/icomden.v2.xxxx.

A. Syarif, A. I. Akaf, R. Prabowo, dan K. Muludi, “Analisis Sentimen Opini Masyarakat Terhadap Pelayanan BPJS Kesehatan Provinsi Lampung Berbasis Twitter,” Jurnal Pepadun, vol. 3, no. 3, hlm. 380–388, Des 2022, doi: 10.23960/pepadun.v3i3.136.

P. D. Wulandari, U. Enri, dan A. Primajaya, “Analisis Sentimen Terhadap Kenaikan Iuran Bpjs Kesehatan Pada Twitter Menggunakan Naïve Bayes Classifier,” Jurnal Ilmu Komputer dan Teknologi, vol. 1, no. 2, hlm. 18–22, Nov 2020, doi: 10.35960/ikomti.v1i2.575.

A. W. Nugroho dan N. Norhikmah, “Sentiment Analysis using the Support Vector Machine Algorithm on Covid_19,” SISTEMASI, vol. 13, no. 4, hlm. 1758, Jul 2024, doi: 10.32520/stmsi.v13i4.3778.

Published
2026-01-26
How to Cite
Barki, H. N., Aslam, H. A., Wibowo, A. P., Araf, F. A. A., & Musawir, A. H. (2026). Analisis Sentimen Pergantian Kementerian Keuangan Indonesia dengan Menggunakan Algoritma Support Vector Machine. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 7(1), 8-17. https://doi.org/10.37148/bios.v7i1.191
Section
Articles